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Proof that e is rational

Suppose e is rational, then e = % for positive integers a and b.

Choose a positive integer n such that b is a factor of n. Then:
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nle = nTa is an integer since b divides n. Also, A,, is an integer since it is the
sum of integers. So, nle — A, is positive integer but no positive integers exist
1
that are less than - which iteelf must be less than 1 (as n in a positive

integer). A contradiction exists and therefore e must be irrational. JEL.



