
The Distance Formula 

 The distance between two points, say, 1 1 1( , )P x y  

and 2 2 2( , )P x y  can be found by using the formula: 

 2 2
2 1 2 1( ) ( )d x x y y      

 This formula is derived through Pythagorean 
Theorem, which is applicable for right triangles. 

Example: Find the distance between (1,2)A  and
(6, 10)B  . 
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The Midpoint Formula 

 A point has x- and y-coordinates. Hence, there 
are two formulas for finding the midpoint—one for x-
coordinate of the midpoint, and the other for y-coordi-
nate of the midpoint. 

 If the midpoint of two points 1 1 1( , )P x y  and 

2 2 2( , )P x y  is given as ( , )m mM x y , then, 
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Example: Find the midpoint of (2,3)C  and (6,7)D . 
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Slope 

 Slope is a ratio at which a line goes upward. It is 
the ratio of rise and run. Rise is the change in y which 
can be found by getting the difference of 2y  and 1y . Run 
is the change in x which can be found by getting the dif-
ference of 2x  and 1x . Therefore, 
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Example: Find the slope of a line that passes through the 
points ( 2,3)E   and (1,4)F . 

Solution:  
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Parallel and Perpendicular Lines 

 Two lines are parallel if and only if they have 
equal slopes, i.e. 1 2m m . 

Example: Line 1 passes through (1,3)  and( 4,13) . Line 
2 passes through (6, 4)  and(3,2) . Show that Line 1 
and Line 2 are parallel. 

Solution:  

Slope of Line 1 Slope of Line 2 
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1 2m m . Therefore Line 1 is parallel to Line 2. 

 Two lines are perpendicular if and only if the 
product of their slopes is 1 , i.e. 1 2 1m m   . 

Note: Distance has always 
 a unit. If unit is not 
 being specified, just
 write unit after the
 computed value. 

The midpoint has 
coordinates (4, 5). 



Example: Line 1 passes through ( 5,1)  and( 3,2) . 
Line 2 passes through (1,3)  and( 14,33) . Show that 
Line 1 and Line 2 are perpendicular. 

Solution:  

Slope of Line 1   Slope of Line 2 
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Forms of a Line 

The Two-Point Form  

 It is used in determining the equation of the line 
that passes through two given points. 

 If a line passes through the points 1 1 1( , )P x y  and

2 2 2( , )P x y , then the equation of that line can be found 
using the formula: 
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Example: A line passes through the points (1,3)  and
( 2, 1)  . Determine the equation of the line. 

Solution: 
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4 3 5 equation of the line in standard formx y     
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The Point-Slope Form 

 It is used in determining the equation of a line 
given its slope and a point on it. 

 If the slope of a line is m , and it passes through 
the point 1 1( , )x y , then the equation of that line can be 
found using the formula: 

 1 1( )y y m x x     

Example: The slope of a line is 2. If the line passes 
through the point(1, 3) , determine the equation of the 
line. 

Solution:  
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2 5 equation of the line in slope-intercept formy x     

2 and 5m b    

Slope-Intercept Form 

 It is used in determining the equation of a line 
given its slope and its y-intercept. 

 If the slope of the line is m , and its y-intercept is
b , then the equation of that line can be found using the 
formula: 



 y mx b    

Example: The slope of a line is
2
3

 . If the y-intercept of 

the line is 1 , determine the equation of the line. 

Solution: 2
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2 3 3 equation of the line in standard formx y      

Intercepts Form 

 It is used in determining the equation of a line 
given its x- and y-intercepts. 

If the x- and y-intercepts of a line are a and b re-
spectively, then the equation of that line can be found 
using the formula: 

 1
yx

a b
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Example: The x- and y-intercepts of a line are 2 and 3
respectively. Find the equation of the line. 

Solution: 2, 3a b     
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Pre-requisite Concepts in Surface Area 

Square 

 It is a regular quadrilateral. If one side is de-
noted by s , then the area is simply: 

 2A s   

Example: Find the area of a square whose side measures 
5 cm. 

Solution: 
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Rectangle 

 It is a parallelogram whose all angles are congru-
ent. Its dimensions are the length and width, denoted by
l and w , respectively. 

 A lw   

Example: Find the area of a rectangle whose length is
4 cm and width of 7 cm . 

Solution: 
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Triangle 

 It is a three-sided polygon. Its dimensions are 
the base and height, denoted by b and h , respectively. 

 
1
2

A bh   

Note: The unit of area has 
always an exponent 
of 2. 

Note: The height is always perpendicular to 
the base. For right triangle, the base 
and the height are either of the legs. 



Example: Find the area of a triangle whose base is 6 in
and height of 3 in . 

Solution: 6 in, 3 inb h    
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Circle 

 It is a set if all points equidistant from a given 
fixed point called a center. The length of a circle is its di-
ameter. Half the diameter is the radius.  

 The radius is the distance from the center to any 
point on the circle. 

 
2
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Example: Find the area of a circle whose radius is 6 cm . 

Solution:  
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Recapitulation 

2

2

Name Area

square
rectangle

1
triangle

2
circle

A s
A lw

A bh

A πr








 

 

 

 

 

 

Equation of a Circle 

 The center of a circle whose center is at the 
origin can be found using the formula: 

 2 2 2x y r  ,  

where r is the radius of the circle. 

Example 1: Find the equation of the circle whose center 
is the origin and whose radius is 3 units . 

Solution: 3r   
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Example 2: The center of a circle is at the origin. If the 
circle passes through the point( 4,3) , find the equation 
of the circle. 

Solution: Since r (radius) is not given, we are going to 
use the formula in order to find the radius. 

2 2 2

2 2 2 2 2 2
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 Suppose the center of the circle is not on the 
origin, say, ( , )C h k then the equation of that circle can 
be obtained using the formula: 

 2 2 2( ) ( )x h y k r      

Example 1: Find the equation of the circle where the 
center is at ( 1,2)  and whose radius is 4  units . 

Solution: ( 1,2), 4 units
h k
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2 2 2 4 10 equation of the line 

                                                    in standard form

x y x y      

 Example 2: The center of a circle is at( 3,2) . If the cir-
cle passes through the point(5,4) , find the equation of 
the circle. 

Solution:    
11 22

( 3,2), ( 3,2) and (5 , 4)
k yh x yx
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Since r (radius) is unknown, we are going to use the dis-
tance formula in order to find the radius. 
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2 2 6 4 55 equation of the circle 

                                                    in standard form

x y x y       

 Sometimes it is the opposite process. The equa-
tion of the circle is given and we are going to determine 
the center and the radius of the circle. 

Example 1: Find the center and the radius of a circle 
whose equation is 2 2 4 2 11x y x y    . 

Solution:  
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Therefore the center is (2, 1)C   and 4r  . 

Perimeter 

 It is defined as the distance around a polygon. 
For circles, it is called circumference. 
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Example: The vertices of a triangle are( 2,1) ,(5, 3) , 
and (6,4) . Find the perimeter of the triangle. 

Solution:  

Side 1 Side 2 
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Side 3 
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